
Journal of Engineering Mathematics Vol. II, No.4, October 1968. 
Wolters-Noordhoff Publishing. 

Printed in the Netherlands. 

COMPLEX ZEROS OF A TRANSCENDENTAL IMPEDANCE FUNCTION 
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SUMMARY 

The electrical impedance of a semiconductor supporting two waves contains an entire transcendental function 
of the form f(z)=exp(-z)- l -cz ,  where s is a complex parameter. This function has an infinity of zeros 
in the left half z-plane when c is finite ( 0 ,  Ic] <+oo). Several approximate expressions for the location of 
zeros as function of c are obtained. For certain values of c (cf. Fig. 3) one or several zeros are located 

in the right half z-plane. The real part of some of those exceeds an arbitrarily large positive number ,  pro- 
vided c is properly chosen. This corresponds to resonances which represent growing oscillations. 

1. Introduction 

A uniform semiconductor subjected to a strong d.c. electric field can 
support various types of high frequency waves. Assume we have two waves 
of different types with small amplitudes and equal frequencies, and suppose 
that one of the waves is of electromagnetic type with vanishing wave num- 
ber (in the quasistatic approximation). Further, assume that the other wave 
does not carry any total current and that its wave number is proportional 
to the frequency, k=~/v. (Examples of such a wave are a phonon wave or 
a carrier wave). Then, a slice of this material has an electric impedance 
(in dimensionless units), [1,2]. 

Z : exp(-z)-l-cz (i. i) 
-CZ 2 

Here z=ikl, ~ is the thickness of the slice, and c is a complex constant 
which represents the amplitude ratio and phase difference between the two 
waves. If the device is short-circuited, the zeros of the impedance function 
determine the resonant frequencies. The location of a zero in the complex 
frequency plane determines whether the corresponding resonance represents 
a growing oscillation or not. 

We are thus faced with the problem of discussing the zeros of the function 

f(z) = e xp ( - z ) - 1 - c z  (1.2) 

where c is a complex constant. For the case c = -i this problem has been 
solved by McCumber and Chynoweth E3]. 

The only singular point of the function (i. 2) is z = o% which is an iso- 
lated essential singularity. Thus, f(z) is an entire, transcendental function, 
which has the following power series, 

2 1 f(z) =-(c+l)z +21 z-~! z3+ .... (1.3) 

From this it appears that f(z) has the zero z = Zo = 0. The order of the 
zero is two if c = -i. Otherwise the zero is of first order. 

We shall see that f(z) has a denumerable number of zeros. Except for 
the zero at z = 0, the location of any zero varies with the complex para- 



390 I.Falnes 

m e t e r  c.  
T h u s ,  the  z e r o s  a r e  r e p r e s e n t e d  by  a m a n y - v a l u e d  f u n c t i o n  

Zo = Zo(C), ( i .  4) 

which is the solution of the equatio~ 

f(Zo) = e x p ( - Z o ) - l - C Z o  = 0 (1.5) 

o r  the  i n v e r s e  of the  f u n c t i o n  

exp  ( - Z o ) - i  
c : (1.6) 

Z o 

O u r  p u r p o s e  h e r e  i s  to d i s c u s s  the p o s i t i o n  of the  z e r o s .  In  p a r t i c u l a r ,  
we s h a l l  e x a m i n e  f o r  w h i c h  v a l u e s  of c z e r o s  a r e  l o c a t e d  i n  the  r i g h t  h a l f  
z - p l a n e  (Re  Zo > 0). 

O c c a s i o n a l l y ,  we s h a l l  f i n d  i t  c o n v e n i e n t  to w r i t e  

c = a + i b  a n d  z = x + i y  ( 1 . 7 )  

w h e r e  a,  b , x ,  a n d  y a r e  r e a l  n u m b e r s .  

2. Z e r o s  in the r e a l  domain 

Setting z = x and c = a, the condition for real zeros becomes 

e x p ( - X o ) - i  = ax  o (2. i) 

If  a > 0 the  o n l y  r e a l  r o o t  of t h i s  e q u a t i o n  i s  

x o = 0 ( 2 . 2 )  

I f  a < 0 t h e r e  i s  a n  a d d i t i o n a l  r e a l  r o o t .  It  i s  n e g a t i v e  i f  a < -1 a n d  p o -  
s i t i v e  i f  -1  < a < 0 (cf .  F i g .  1). 

-1 

..~>0 \ 
~ jJ 

-2 T '< : - - .  j j ~ "  

p s  I \ ~ - . - l < a < 0  

.d~ 

Fig. 1 Plots of exp(-x)-I (fully drawn curve) and of ax (dashed line). The points of intersection determine 
the real zeros of f(z). 

T h i s  d e m o n s t r a t e s  t h a t  a r e a l  z e r o  p a s s e s  a l o n g  the  r e a l  z - a x i s  ( the  
r e a l  a x i s  of the  z - p l a n e )  f r o m  -ao to + m  w h e n  the p a r a m e t e r  c p a s s e s  
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a l o n g  the  r e a l  c - a x i s  f r o m  -ao to  0. 
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3. Z e r o s  when I cl is s m a l l  

F o r  the  c a s e  c = O, f (z)  e v i d e n t l y  h a s  the  z e r o s  

z o= z o(0) : i2~, u : ...,-2,-i,0, I,2 .... 

Differentiating (i. 6), we get 

( 3 . 1 )  

- (zo+l) exp ( - z  o)+I ) 
dc = z} dz~ ( 3 . 2 )  

Inserting (3. i) this gives 

dzo(O) 
- Zo = -i2~u 

dc 

( 3 . 3 )  

Hence, for c-~ we have 

z o = Zo(C ) = i2= u-i2~vc+(~c 2} ( 3 . 4 )  

For everyu this represents a power series in c. Since Zo(C) is a many-valued 
function, branch points exist in the c-plane, and for ~$0 every power series 
(3.4) has a finite radius of convergence. (Cf. Section 8 - Appendix). Hence, 
on the circle of convergence there is a singular point c = c,~ at which 
dzo/dc does not exist. From (.1.5) and (3.2) we find 

dz o(0) Zo (3.5) 
dc CZo+C+l 

I f  we l e t  c -~ c9 s u c h  t ha t  Icl<lc l, we can use (3 .4 ) .  Then ,  f o r  Zo~ 
we find 

dz o (c) 

dc 
--~ when l+(l+Zo)C = l+(l+i2zr~)c-i2~'uc2 +O[c 3 } --~ 0 (3.6) 

This condition determines the singular (branch) point c,). If [e,~] is suf- 
ficiently small, that is, when [u[ is sufficiently large, we see from (3.6) 
t h a t  

i2~ ~ = i 
c~ -~ -i/(l+i2~y + ~ ,  2~r~ (3.7) 

This agrees with (8. ii). Cf. also (8.8). 
We can conclude that a zero is given approximately by the first two 

terms of the right hand side of (3.4), provided 

1 ( 3 . 8 )  

Then we have 

Re z o ~ 2~u Im c = 2~b, (3.9) 
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which means that if Icl <<i and Im c ~ 0 there is at least a finite number 
of zeros in the right half z-plane. 

For completeness, we here mention one particular zero for ]c] <4 1 not 
included in the preceding discussion of the present section. For this case, 
refer to (5.14). 

4. Zeros near the origin of the z-plane 

A p a r t  f r o m  the  f i x e d  z e r o  Zo ~ 00 t h e r e  m a y  be  a n o t h e r  z e r o  n e a r  the  
o r i g i n  of  the  z - p l a n e ,  p r o v i d e d  | e + l [  i s  s u f f i c i e n t l y  s m a l l .  T h e  f i r s t  t h r e e  
t e r m s  of  the s e r i e s  ( 1 . 3 )  g i v e  f o r  t h i s  z e r o  

4 (i+c)2 +0[(i+c)3} (4.1) z o = 2 ( 1 + c )  + - ~  

F o r  I i + c [  <4 1 we t h u s  h a v e  

3 ( l + a )  2 4 b2 Re  z o ~ 2 ( l + a )  + ~- - - ~  (4.2)  

This zero is in the right half z-plane if 

b 2 3 ( l + a )  > (4 3) ( l + a )  2 + ~ 

In Fig. 3 the edge of this hyperbolic region is indicated by the dashed curve. 

5. Zeros far  from the origin of the z-plane 

E q .  ( 1 . 5 )  c a n  be  r e w r i t t e n  a s  

z o = - l n ( l + c z o )  = 

= - l n l l + e z o l  - i a r g ( l + C Z o )  = 

= i21rv - i Arg(l+CZo) - in[ l+czol 

w h e r e  

and  

(5.1) 

(5.2) 

(5.3) 

- r < A r g  ( l + c z o ) ~  ( 5 . 5 )  

We s e e  t h a t  if  c = 0, th i s  r e s u l t  a g r e e s  wi th  ( 3 . 1 ) .  
I f  

I c%l -> 1, (~  6) 

i t e r a t i v e  c a i c u i a t i o n  f o r  the  s o l u t i o n  of  ( 5 . 3 )  c o n v e r g e s  r a p i d l y .  A s  a f i r s t  
a p p r o x i m a t i o n  we t a k e  

z o ~ i27rv (5. 7) 

which in view of (5.6) is a fairly good approximation if 

1 1 
Iv[  >> ~ or Icl :'> ~ ( 5 . 8 )  

v : . . . , - 2 , - 1 , 0 , 1 , 2  . . . .  ( 5 . 4 )  



Complex zeros of a t ranscendental  impedance function 393 

As a better approximation we then have from (5.3) 

Zo ~ i2~ - iArg (l+i27ruc) - in I l+i2~ruc[ 

I,'1_ iarg c- inl 2- cF 
/2 

(5. 9) 

(5 10) 

this expression gives the approximate location of infinitely many zeros. 
None of them lies in the right half part of the z-plane, for 

Re Zo~-inl2~ryc I < 0 (5.11) 

because of (5.8). 
The relative error of the approximation decreases as Ivl increases. 

Better approximation can be obtained, if necessary, by further iteration 
on (5.3). For I,' = 1 and c = -i, the approximation (5.9) gives Zo ~ 
-I. 85+i7. 70, while the correct numerical value is Zo = -2.09+i7.46, E3J- 

We observe that for 12 = 0, the condition (5.8) can not be fulfilled for 
any finite c. If leZo[ >> 1 we can still apply (5.3) for an iteration proce- 
dure, but instead of using (5. 7) we start the iteration procedure for u = 0 
by a z o which is a negative number of sufficient magnitude. The solution 
corresponds to a generalization of the zero discussed in Section 2 when 
a = Re c has a large negative value. The iteration procedure will not be 
carried out here, because it concerns a zero in the left half z-plane 
(Re Zo < 0). 

Eq. (5.3) shows that if I c[ is sufficiently small, there exists a zero 
with Re z o >> 1 if ]l+cz[ << i. This requires that Re c < 0. 
In this case (5.3) is not well suited for iteration. Instead, we rewrite (i. 5) 
as 

l - exp( -zo)  
Zo - -c (5. 12) 

A first approximation 

1 
z o ~ - - ( 5 .  1 3 )  C 

and, iterating gives the better approximation 

l-exp(i/c) 
Z~ -C (5.14) 

valid when 

-Re_____~c = Re ( 1 )>>i (5. 15) 
[c12 T 

This zero corresponds to a generalization of the case discussed in Section 
2 when a is a small negative number. An interesting point is that by 
appropriate choice of c this zero can have an arbitrarily large real part. 

6. Zeros having positive real part 

We have seen that it is possible to have a zero in the right half z-plane 
if -i < Re c < 0 and Imlc I is not too large. Cf. Section 2 and Equation 
(5. 14). Further, (3.8) and (3.9) show that there may be any (natural) 
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number of zeros in the right half z-plane, provided [c I is sufficiently 
small and Im c 4 0. For a given c, however, the number of zeros in the 
right half z-plane is finite cf. (5.8) and (5. 9). 

In order to find conditions on c for satisfying Re z o > 0, we can apply 
"the principle of the argument" [43: 

N = 2~ Acarg f(z) ( 6 . 1 )  

In words: Provided a function f(z) has no singular point on and inside a 
closed contour C, the number N of zeros (counted m times if the order 
of the zero is m) inside this contour equals (i/27r) times the change in 
argument of f(z) as z moves once around the closed contour. Of course, 
N is an integer, when no zero lies on the contour. Application of (6. i) 
to the contour C of Fig. 2 when X = 0 and R --, + r yields the famous 
Nyquist stability criterion. 

Iy 
iR 

i 
i 
i 

-JR. 

C. 2 

X 
P 

Fig. 2 Closed contour C --C 1 OC 2 in the complex z-plane, where CI= [z  = X + iy [R > y > -R} and C 2 = 

Z = X + R  e x p ( i ~ ) [  --~ <_ r ~ . In t he  cons ide red  eases  X >_ O, a n d R  ~ +o:,. 

S i n c e  o u r  f u n c t i o n  f ( z )  a l w a y s  h a s  a z e r o  a t  z = 0 w e  e x c l u d e  t h i s  z e r o  
b y  d e f i n i n g  a n e w  f u n c t i o n  

g ( z )  f ( z )  e x p  ( - z ) - i  
= = - c ( 6 . 2 )  

Z Z 

On the contour C 2 of Fig. 2 (the semicircle), 

2 I g ( z ) + o [  -_ 

since lexp(-z) l <_ i there, provided X -2_ 0. Therefore 

g ( Z ) l z ~ C 2 - ~  - c  a s  R -~  + (6.3) 

Hence, as z moves along C2 (R -~ + co) there is no change in the argument 
of g(z), 



Complex zeros of a transcendental  impedance function 

l i m  A 2 a r g  g(z)  = 0 
R-~+~ 
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( 6 . 4 )  

Using(l.7),we have on the contour C 1 of Fig. 2, x = X, 

Re g = A ( y ) - a  

I m  g = B ( y ) - b  

w h e r e  

(6.5) 

(6.6) 

A(y)  --  - X { 1 - e x p  ( -X)  c o s  y } - e x p ( - X ) y  s in  y 
X2+y 2 

B(y) -- [l-exp(-X) cos y}y-Xexp(-X) sin y 

X2 + y2 

(6.7) 

(6.8) 

Setting g = 0 on C I (i. e. X is fixed) yields 

a = A(y) and b = B(y) ( 6 . 9 )  

which are the equations for a plane curve in parametric form (y is the 
parameter). Such curves are exhibited in Figs. 3, 4, and 5 for X = 0, X = i, 
and X >> i, respectively. 

Apparently, A(y) is an even function of y0 and B(y) is an odd function. 
For the case X = 0, (6.7) simplifies to 

A(y) = - sin y (6. I0) 
Y 

which  h a s  the m i n i m u m  v a l u e  

A o = -i at y = 0 (6.11) 

and maximum value 

AI'~ 0.2172 at y=• 

Further, for X = 0, (6.8) simplies to 

(6.12) 

B(y) = 1-cos y (6. 13) 
Y 

which has the maximum (minimum) value 

+ Bo~ + 0.7246 at y~ + 2.33 (6.14) (-) (-) (-) 
Consequently, if a ~ -i or a > A1, Re g never changes sign on CI. 

Hence, g(z) has no net change in argument as z describes the contour 
CI(R--~ +~), that is Alarg g = 0. Or, if IbI>Bo, Im g never changes 
sign on C I, which means that A 1 arg g = 0 also in this case. With (6. i) 
and (6.4) in mind, we see that g(z) and, hence, f(z) have no zero in the 
right half z-plane if a < -!, or a > A 1 = 0.2172, or Ibl > Bo ~ 0.7246. 

If on the other hana 

-i < a < A 1 and -B o < b < Bo, (6.15) 

then f(z)may, or may not, have zeros in the right half z-plane depending 
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/J 
/ 

S/ 

~ 0  

,b 

c-plane 

, \  
\ 
\ 

Fig. 3 The number  N of zeros of f ( z ) i n  the right ha l f  z -p lane  depends on the complex parameter  c as indi-  
cated in this d iagram,  for N=0, N=I, N=2 and N _> 3. The  six points marked by crosses (x) are branch 

points for the function Zo(C ) .  They are, c 1, c 2, c 3, c_3, c_ 2, and c-1  (listed from above and 
downwards in the f igure).  The  points c o = - 1  (not a branch point) is marked with a small  circle 
(o) .  Cf. (3 .7)  and Table  1. The hyperbola defined by (4.3)  is indicated by the dashed curve. 

on how a and b are interrelated, as shown in Fig. 3. 
The curve given by (6. 9) when X = 0 are composed of an infinity of closed 

(sub-)curves which touch each other at c = 0 as indicated in Fig. 3. These 
curves divide the c-plane into regions in such a way that if c belongs to a 
particular region, then f(z) has a certain number N of zeros in the right 
half z-plane. Fig. 3 displays the curves which separate regions giving 
N = 0, i, 2, 3. For N _~ 2 the regions are shaped like a figure of eight, with 
decreasing extension as N increases. The curves cross the imaginary axis 
of the c-plane in the points c = i2/[(2k+l)Tt, k : !i,!2,!3 .... correspon- 
ding to y = (2k+l)~'. In accordance with (3.9) we find that f(z) may have any 
(natural) number of zeros in the right half z-plane, provided I c[ is small 
enough and Irn c ~ 0. 

The curves in Fig. 3 represent a mapping of a straight line between the 
points z = 6[i and z = -6~i in the z-plane. Each separating curve, as 
shown in Fig. 3, represents a mapping of a part of the imaginary axis of 
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the z-plane, by an appropriate branch of the function Zo(C). Suppose _c 
moves along the curves in the clockwise direction starting at c = -i. Then 
a zero moves from z-'-" 0 upwards along the axis Re z = 0. When c is 
at Re c = 0 the zero is at z = 7ri. Further when c approaches e = 0 the zero 
approaches z = 2~ri. (Cf. (3.4) for zJ = i. ) Continuing on the curve which 
separates the"N= l"and"N=2 '' regions of Fig. 3untilc again approaches c = 0, 
the zero approaches z = 4~ri. (Cf. (3.4) for ~ = 2.) Letting c circle once more in the 
clockwise direction, now on the curve which separates the "N=2 '' and "N=3" re- 
gions, the zero moves from z = 47ri to z = 61ri. 

By the procedure just described, the many-valued-hess of the function 
Zo(C ) clearly appears. By each round trip of c (as described above) we 
find a new value of Zo at c = 0, which means that a branch point of Zo(C) 
has been encircled. This is discussed in more detail in Section 8 (Appendix). 
A few branch points are depicted in Fig. 3. 

Also if X > 0, it can be shown that f(z) may have any number of zeros 
satisfying Re z o > X provided c is properly chosen. It is necessary that 
I cl is very small. In fact, (5.3) shows that if, for any ~, c has such a 
value as to make I i+CZol sufficiently close to zero, than Re z o may be 
arbitrarily large. 

The curve given by (6.9) for X = 1 makes one loop around each 
branch point cg, where At -- il, +_2, !3 ..... A few of the loops appear 
in Fig. 4. If c belongs to one of the regions bounded by the two loops 
around c I and c_ 1 , then f(z) has two and only two zeros satisfying Re z o > i. 
The regions bounded by the other loops partly overlap each other. There are 
n such zeros (N=n) if c is located where (n-l) "loop regions" overlap each 
other. 

If X >> i, exp(-X) is an extremely small number. For I Yl << exp(X) we 
then neglect exp(-X)in (6. 7) and (6.8). We can then eliminate y from the 
two equations (6.9), and there remains 

1 2 2 1 2 
( a  + ~ - ~ )  + b : (~-~)  ( 6 . 1 6 )  

c-plane 
i 0,5 t b 

N=C/ N=I 

-0-5 

Fig.4 The number N of zeros of f(z) in the region Re z > 1, depends on the complex parameter c as in- 
dicated in this diagram, 
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c-plane I b 

N-O / 
- I  IX 

Fig. 5. When c = a + ib is a point inside (outside) the shown circle, then f(z) has one (no) zero z o sat- 
isfying Re z o > X, provided X )> 1 and I c]  >> e x p ( - X ) .  Cf. (6 .16) .  

When c_ is inside this circle (cf. Fig. 5), f(z) has one zero with Re z o > X. 
This zero is the one that is given approximately by (5.14). When IYl is 
comparable with or larger than exp(X) the corresponding point on the curve 
(6.9) has Ic] comparable with or smaller than exp(-X). Then the approxima- 
tion (6. 16) no longer represents the details of the curve. In fact, the curve 
makes loops similar to those of the curve for the case X = i, but only 
around the branch points C+k, where k = p, p+l, p+2 .... and p is the smal- 
lest natural number such-that Re Zo.p > X where Zo.p is a double zero of 
f(z) when c = Cp (cf. Section 8 - Appendix). Using (8.4) we find anes- 
timate for the positive integer pj 

e x p ( X )  
P = 2~r ( 6 . 1 7 )  

If c belongs to a certain neighbourhood of one of the branch points Ctk, then 
at least two zeros of f(z) has Re z o > X. Cf. (8.10). The extent of the 
neighbourhood is bounded by a loop of the curve (6.9). When k is sufficiently 
large, an arbitrarily large number (n-ll of loops overlap each other, and 
the number of zeros with Re Zo > X is correspondingly large (= n). 

7. Conclusion 

We have shown that the function f(z) = exp(-z)-l-cz has infinitely many 
zeros. They are, however, denumerable. Except for a zero at z = 0, the 
location of the zeros varies with the complex parameter c. 

Representations for the location of the zeros are given by several series 
expressions or approximations valid for different cases: for small ] cl, 
for small [z], and for large ]z]. 

Further ithas been shown that if c is properly chosen (cf. Fig. 3), f(zl 
has one or more zeros in the right half z-plane. If ]cl is finite (0~]c I 4 +~), 
the number of such zeros is finite. Thus, there are always infinitely many 
zeros in the left half z-plane. 

It has been observed that f(z) may have one zero with arbitrarily large 
positive real part, provided Re c < 0 and Ic] is small enough (ef. Fig. 5). 
We choose a large positive number X (X >> i). We have found that f(z) has 
at least two zeros with Re z o > X. if c belongs to a certain neighbourhood 
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of  one  o f  t h o s e  b r a n c h  p o i n t s  c~ f o r  w h i c h  [c~J i s  l e s s  t h a n  a n u m b e r  
a p p r o x i m a t e l y  e q u a l  to e x p ( - X ) .  

T h e  a b o v e  f i n d i n g s  m e a n  t h a t  b y  p r o p e r  a d j u s t m e n t  o f  a m p l i t u d e  r a t i o  
a n d  p h a s e  d i f f e r e n c e  b e t w e e n  the  two  w a v e s  m e n t i o n e d  in the  I n t r o d u c t i o n  
it  i s  p o s s i b l e  to o b t a i n  r e s o n a n c e s  w h i c h  r e p r e s e n t  g r o w i n g  o s c i l l a t i o n s .  

8. ( A P P E N D I X )  Zeros of second order. Branch points for  Zo(C ) 

F r o m  ( 1 . 3 )  i t  a p p e a r s  t h a t  z = 0 i s  a z e r o  o f  s e c o n d  o r d e r  if  c = -1 .  
O t h e r w i s e  the  z e r o  i s  o f  f i r s t  o r d e r .  

T h e  f u n c t i o n  f(z)  h a s  the  f o l l o w i n g  T a y l o r  s e r i e s  a r o u n d  a z e r o  Zo, 

g ( Z - Z o )  ~ ( Z - Z o )  a 
f (z)  = - ( e + e x p ( - z o )  ) (Z-Zo)+exp(-zoJ lk"  ~., - 3------~ + "" "} (8. 1) 

S i n c e  e x p ( - Z o )  4 0 f o r  Zo ~ = ,  no  z e r o  c a n  be o f  h i g h e r  o r d e r  t h a n  two.  
F o r  a z e r o  z o to be  o f  s e c o n d  o r d e r  i t  i s  n e c e s s a r y  t h a t  

c = - e x p  ( -Zo)  ( 8 . 2 )  

I n s e r t i n g  t h i s  i n t o  ( 1 . 5 )  g i v e s  

e x p ( Z o ) - l - z  o = 0 (8.3) 

which also means that the denominator in (3.2) vanishes. If Zo is one of 
the solutions of (8.3) and c has the specific value given by (8.2), then, 
and only then, f(z) has a zero of second order. 

We see that Zo = 0 and c = -I is a solution of (8.3) and (8.2) as was 
to be expected. All the other (infinitely many) solutions of (8.3) lie in the 
right half z-plane and they appear to exist in complex conjugate pairs. We 
observe that the problem of solving (8.3) is identical with the problem of 
finding the zeros of (1.2) if we let c = -i and z = -z o. 

We then can apply (5.9) to yield the following approximate expression 
for the solution of (8.3) 

z o = Z o , ~  1 n i l  +27r /~ i l+ i27r /~+i  A r g ( l + 2 ~ r # i ) ,  /~ = +_1, + 2  . . . .  ( 8 . 4 )  

F r o m  ( 8 . 2 )  we t h e n  k n o w  t h a t  f ( z )  h a s  a z e r o  o f  s e c o n d  o r d e r  i f  

c = c~ = - e x p ( - Z o , ~ ) ,  ~ = . . . ,  - 2 ,  -1~ 0, 1,2 . . . .  

w h e r e  Zo, ~ i s  a s o l u t i o n  o f  ( 8 . 3 ) .  F o r  e v e r y  /~, 

I I < 0  c#  < 1 a nd  -1  < R e  c . 

We h a v e  

(8 ~,1 

(8.6) 

C O : - 1  

and ,  g e n e r a l l y ,  

(8. 7) 

-1  -1 
c .  = - (8:8) 

1 + Zo.p 1 +i27r/~ 

If  n e c e s s a r y ,  b e t t e r  a p p r o x i m a t i o n  c a n  be o b t a i n e d  by  f u r t h e r  i t e r a t i o n .  
T a b l e  1 s h o w s  the r e s u l t s  of  i t e r a t i v e  c o m p u t a t i o n s .  
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T a b l e  I. 

Solut ions Zo,i/ of (8 .3)  and branch points  c~ for the  m a n y - v a l u e d  

funct ion  z ( c ) .  (However ,  c is an ordinary  p o i n t . )  When c = c , 
o o 

f (z)  has a double  zero  a t  z = z . Cf .  (8 .4 )  to  (8 .8 ) .  
o , j /  

0 

+I 

+2 

+3 

+4 

§ 

+6 
+7 

+8 
+9 
h 

+ I0 

Zo,p 

0 

2.089 zi 7.461 

2.664 i i 13.879 

3. 026 +__ i 20. 224 

3. 292 +_ i 26. 543 

3.501 +_i 32.851 

3. 675 +_ i 39. 151 

3 .822  + i 45 .447  

3.951 +_ i 51. 741 

4 .065  + i  58 .032  

4. 167 + i 64 .322  

c# 

-I 

- O. 0474 +__ i O. 1144 

- 0.0178 +_ i O. 0674 

- 0.0095 + i 0.0476 

- 0. 0059 +__ i 0. 0367 

- 0. 0041 *_ i 0. 0299 

-0.0030 i i 0.0252 

-0.0023 +_ i 0.0218 

-0.0018 +i 0.0192 

-0.0015+i0.0171 

-0.0012 + i 0.0154 

( - O + i 2 w / l }  -1) 

(- I) 

( -0 .025  + i 0.155) 
(-0.006 +_i 0.079) 
(-0.003 +_i 0.053) 

(-0.002+_i0.040) 
(- 0.o01 +_i 0.032) 
(- 0.001 + i 0.027) 
(-o.ool +_i 0.023) 

(+_ i 0.020) 
(+ i 0.018) 
(+  i 0. 016) 

For comparison, results based on the approximation (8.8)are given in 
parentheses. (The approximation (3.7) is slightly closer to the correct value 
than the approximation (8.8).) A few of the points c~ are shown in Fig. 3. 

We can expand f(z) in the following two-dimenw Taylor series in 
(c-c~) and (Z-Zo,#), 

(Z-Zo.,)  2 (Z-Zo.,  
f ( z )  -- - z o . , ( e - c  . ) -  ( e - c . )  (Z-Zo. . ) - c  + �9 . .  

2 ~ ( 8 . 9 )  

Setting f(z) = 0, this gives for the zeros as c-~ c 

3~ 

(~ ~ o), 
t~ 

zo : #)12+ - -  (-~-Zo, . -1) ( e -e . )  
c# c# 

(8 .1o )  

Since Zo, o = 0, the analogue of (8. i0) for ~ = 0 is (4. i) We observe that 
for /~ ~ 0, every point c~ is a branch point of order one for the many-Valued 
function Zo(C). That is, one particular c~ is a singular point for two specific 
branches of Zo(C), while it is an ordinary point for all the (infinitely many) 
other branches of Zo(C). (The reader who is not familiar with such a case 
may consult the classical book of Knopp [5 3 . ) The point Co = -i is an or- 
dinary point for all branches of Zo(e). 

From (8.8) or (3. 7) we see that - 

i c.-. T~-* 0 as I ~ 1 - ~  + oo (8 .11)  

This demonstrates that c = 0 is a limit point of branch points. Nevertheless, 
(3.4) shows that c -- 0 is an ordinary point for a denumerable set of branches 
of z (c). However, e = 0 is a singular point for that branch of Zo(C) which 
is represented approximately by (5.14). 

We observe - from (8.1) - that if c r {c~.} all the zeros, are simple (i.e. 
of first order). When c approaches one partlcular c5 two slmple zeros merge 
to form a double zero (i.e. zero of second order)at Zo, ~ . For ~ ~ 0, 
Re Zo, ~ > 0. Therefore, all c~ (/~ ~ 0) belong to the c-reglon which, gives 
more than one zero in the right half z-plane. 
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